y(2-3xy)dx-xdy=0

July 30, 2016 - 10:09pm

#1
Integrating factors found by inspection

equation for geometric sequence regular hexagon properties lines of mensuration orthocentre of triangle formula families of lines analytic geometry gyrations meaning formula square pyramid circumscribed circle of a triangle derivatives trigonometric area of a pentagonal prism difference between cuboid and rectangular prism formulas for parabolas stress strain curve yield point substitution method in integration torque reducer compound interests formula how to derive quadratic formula ptolemy math circumscribed and inscribed circle of a triangle quadratic formula definition math polygon apothem how to find shear strength integration by substitution tutorial trapezoid calc trig substitution integration problems inscribe a circle conic circle equation depreciation formula math inscribe angles definition of shearing force centroid and centre of gravity areal moment of inertia inscribed and circumscribed torsional shear strain moment of inertia square tube tensile strain at yield triangular distributed load spandrel beam definition explain stress strain curve for ductile material inverse laplace examples formula for slant height of a pyramid integral calculus questions 3d statics problems how to find a resultant force herons formula reciprocal meaning in maths centroid of semi circle statics and mechanics of materials solutions pdf examples of brittle and ductile materials density of steel kg m3 triangle relationships geometry derivatives inverse trig using double angle identities mensuration of solids what is the difference between centroid and center of gravity altitude in geometry double angle formula sin arithmetic math formulas theta triangle i beam second moment of area calculator math equation clock what is the formula of a square pyramid spherical sector using double angle identities casio fx 115es plus properties of parabola heron s formula apothem formula gyration radius casagrande liquid limit test law of exponents examples central angle of a circle integrals calculus examples spring constant formulas modulus of resilience of steel wedge volume calculator math triangle formulas

The differential equation $y(2-3xy)dx-xdy=0$ has the form $M(x,y)dx+N(x,y)dy=0$, which is of first order and first degree, doesn't seem to fall into a variable-separable, homogenous, or exact type of differential equation. But delving deeper into the equation, we noticed that the given differential equation could be an exact differential equation if we modify it properly.

You're interested in getting the integrating factor of $y(2-3xy)dx-xdy =0$, so here's how.....

To check that the given differential equation is an exact-type, a necessary condition $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ must be satisfied, otherwise, it would be an inexact differential equation.

So....

$$y(2-3xy)dx-xdy=0$$ $$(2y-3xy^2)dx-xdy=0$$ $$\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$$ $$\frac{\partial}{\partial y}(2y-3xy^2)=\frac{\partial }{\partial x}(-xdy)$$

To get $\frac{\partial M}{\partial y}$:

$$\frac{\partial M}{\partial y} =\frac{\partial }{\partial y}(2y-3xy^2)$$ $$\frac{\partial }{\partial y}(2y-3xy^2) =2-3x(2y)$$ $$\frac{\partial }{\partial y}(2y-3xy^2) =2-6xy$$ $$\frac{\partial M}{\partial y} =\frac{\partial }{\partial y}(2y-3xy^2)= 2-6xy$$

To get $\frac{\partial N}{\partial x}$:

$$\frac{\partial N}{\partial x} =\frac{\partial (-x)}{\partial x}$$ $$\frac{\partial (-x)}{\partial x} = -1$$ $$\frac{\partial N}{\partial x} =\frac{\partial (-x)}{\partial x} = -1$$

We see that $\frac{\partial}{\partial y}(2y-3xy^2) \neq \frac{\partial }{\partial x}(-x)$

Therefore, the given differential equation is an inexact differential equation, not an exact-type, so we need to convert this inexact differential equation into an exact-type. This is how to do it.

To make an inexact differential equation into an exact-type, multiply an integrating factor $I(x,y)$ to the entire differential equation. Our integrating factor would be $x^p y^q$. Solve for $p$ and $q$ to make it exact.

$$y(2-3xy) dx - xdy = 0$$ $$(2y-3xy^2)dx - xdy = 0$$ $$x^py^q((2y-3xy^2)dx - xdy = 0)$$ $$(2x^py^{q+1} - 3x^{p+1}y^{q+2})dx - (x^{p+1}y^q)dy = 0$$

Then...

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(2x^py^{q+1} - 3x^{p+1}y^{q+2})$$ $$\frac{\partial M}{\partial y} = (q+1)(2x^p)(y^{(q+1)-1})-(q+2)(3x^{p+1})(y^{(q+2)-1})$$ $$\frac{\partial M}{\partial y} = 2(q+1)x^py^q-3(q+2)x^{p+1}y^{q+1}$$

And...

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(- (x^{p+1}y^q))$$ $$\frac{\partial N}{\partial x} = (-1)((p+1)x^{(p+1)-1}y^q)$$ $$\frac{\partial N}{\partial x} = (-1)((p+1)x^py^q)$$ $$\frac{\partial N}{\partial x} = -(p+1)x^py^q$$

Therefore...

$$\frac{\partial M}{\partial y} = 2(q+1)x^py^q-3(q+2)x^{p+1}y^{q+1}$$ $$\frac{\partial N}{\partial x} = -(p+1)x^py^q + 0$$

We now solve for $p$ and $q$:

This is a linear equation, two equations and two unknowns...

$$2(q+1) = -(p+1)$$ $$2q+2=-p-1$$ $$2q+p=-1-2$$ $$\color{red}{p+2q=-3}$$

And....

$$\color{red}{-3(q+2)=0}$$ $$-3q-6=0$$ $$\color{red}{\underline{q=-2}}$$

Then...

$$p+2q=-3$$ $$p+2(-2)=-3$$ $$\color{red}{\underline{p=1}}$$

Therefore, the integrating factor that we seek is $\color{green} {I(x,y) = x^py^q = x^1y^{-2} = \frac{x}{y^2}}$.

To verify that inexact differential equation $y(2-3xy)dx-xdy=0$ can be made exact by multiplying it by $\frac{x}{y^2}$, we do this:

$$\left( \frac{x}{y^2}(y(2-3xy)dx-xdy=0)\right)$$ $$\left( \frac{x}{y^2}((2y-3xy^2)dx-xdy=0)\right)$$ $$\left(\frac{2x}{y}-3x^2\right)dx - \frac{x^2}{y^2}dy = 0$$

Then...

$$\frac{\partial M}{\partial y} = \frac{\partial }{\partial y}\left(\frac{2x}{y}-3x^2\right)$$ $$\frac{\partial M}{\partial y} = -\frac{2x}{y^2}$$

And...

$$\frac{\partial N}{\partial x} = \frac{\partial }{\partial x}\left(\frac{2x}{y}-3x^2\right)$$ $$\frac{\partial N}{\partial x} = -\frac{2x}{y^2}$$

So...

$$\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$$

The integrating factor of $y(2-3xy)dx-xdy=0$ is $\color{green} {\frac{x}{y^2}}$

Alternate solutions are highly encouraged.....